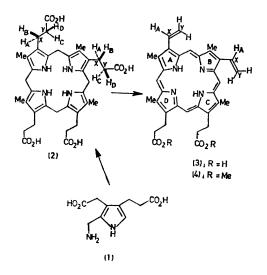
# **Journal of**

# The Chemical Society,

## **Chemical Communications**


NUMBER 13/1975

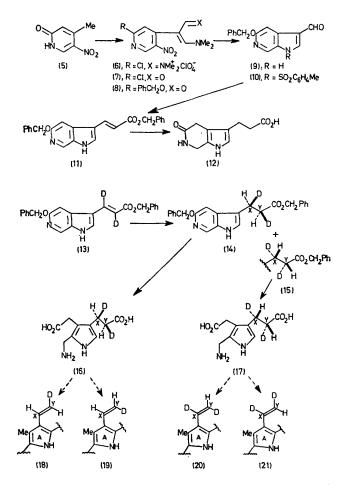
### Stereochemistry of Biosynthesis of the Vinyl Groups of Protoporphyrin-IX: A Short Synthesis of Porphobilinogen

By ALAN R. BATTERSBY,\* EDWARD MCDONALD, HANNS K. W. WURZIGER, and (in part) KEVIN J. JAMES (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary Porphobilinogen (1),  $[^{2}H]$ -labelled in the propionic residue, is synthesised by a short route and is used to establish that both vinyl groups of protoporphyrin-IX are biosynthesised by overall antiperiplanar elimination of a proton and carbon dioxide.

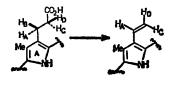
THE biosynthesis of protoporphyrin-IX (3) and thus also of haem involves oxidative conversion of the propionic acid groups on rings A and B of coproporphyrinogen-III (2) into vinyl groups by the enzyme coproporphyrinogenase.<sup>1</sup>




Coproporphyrinogen-III (2) is biosynthesised from four moles of porphobilinogen, PBG (1) by way of uroporphyrinogen-III (2,  $CH_2CO_2H$  in place of Me). Earlier studies

from this laboratory<sup>2</sup> and elsewhere<sup>3</sup> showed that the conversion of  $(2) \rightarrow (3)$  involved loss of only one hydrogen atom from each of the centres X and retention of both hydrogens at positions Y. Hydrogen removal from the centres X was found to be stereospecific<sup>3</sup> with loss of the *pro-S* hydrogens<sup>3</sup>. We now define the stereochemistry of formation of the vinyl groups.

We developed a synthesis of PBG based on Rapoport's azaindole approach<sup>4</sup> but new chemistry allowed considerable shortening and more than doubled the yield.


The pyridone<sup>5</sup> (5) with POCl<sub>3</sub>-dimethylformamide (DMF)<sup>6</sup> in refluxing chloroform (24 h) gave the salt (6). 90% yield, m.p. 233° (decomp.), which was hydrolysed by sodium hydroxide in aqueous acetone to the aldehyde (7) m.p. 189—190° and then (7) with sodium benzyloxide in benzyl alcohol gave the ether (8), 80% yield from (6), m.p. 128—129°. Reduction of (8) with zinc dust and aqueous acetic acid yielded the azaindole (9), 60% yield, m.p. 194—195° which reacted with monobenzyl malonate in dry pyridine-piperidine to form the acrylate (11), 98% yield, m.p. 175—177°. Palladium and hydrogen then cleaved the benzyl groups, saturated the double bond and reduced the pyridone to give PBG lactam (12), 84% yield, characterised as its methyl ester, m.p. 245—247°. The yield of lactam (12) from the pyridone (5) was 35% overall.

The N-tosyl aldehyde (10) was deuteriated by the morpholinonitrile method' and cleavage with NaOD in  $D_2O$ -tetrahydrofuran gave, after exchange of >ND against water, the deuteriated aldehyde (9, CDO in place of CHO; no CHO detectable by n.m.r.). This condensed with deuteriated monobenzyl malonate to give the [ ${}^{2}H_{2}$ ]-acrylate (13) which was reduced by diimide to form the racemate (14) + (15). In this product, the relative configuration at centres X and Y has been fixed by the established sym-stereospecificity of



diimide. Hydrogenation gave the corresponding PBG lactams and hydrolysis then yielded labelled PBG as a racemate (16) + (17). This was converted by our preparative cell-free system from Euglena gracilis<sup>8</sup> into protoporphyrin-IX isolated as its ester.

The <sup>1</sup>H n.m.r. signals from  $H_A$  of each vinyl group of unlabelled protoporphyrin-IX dimethyl ester (4) appear as a double doublet centred at ca.  $\tau$  2.8 (J<sub>trans</sub> 18 Hz, J<sub>cis</sub> 11 Hz) which can overlap, but at a suitable concentration eight separate signals can be observed corresponding to the two hydrogens  $H_A$ . In the enzymic conversion of labelled PBG (16) + (17) into protoporphyrin-IX, the (R,R)enantiomer (17) will lead either to arrangement (20) or to (21) and neither of these can give rise to a signal at  $\tau 2.8$ (no <sup>1</sup>H at X centres). In contrast, the (S,S)-enantiomer (16) by elimination of the forward hydrogen (D in this case) antiperiplanar with the carboxyl group would lead to vinyl groups as in (18) whereas a synperiplanar process would form vinyl groups as in (19). The <sup>1</sup>H n.m.r. spectrum of the labelled protoporphyrin-IX dimethyl ester showed two slightly broadened doublets both with the trans coupling (J 18 Hz) for the two H<sub>A</sub> hydrogens and so it was established that both vinyl groups had trans oriented hydrogen atoms (18). The <sup>1</sup>H n.m.r. signals from the centres Y will be analysed in full later; the signal pattern confirmed the observations for the centres X. Thus, biosynthesis of the two vinyl groups of protoporphyrin IX occurs by an overall antiperiplanar elimination of a proton and carbon dioxide (Scheme).



SCHEME

We thank Drs. D. H. Grayson and E. Hunt for their help and the British Council, the Nuffield Foundation and S.R.C. for financial support.

#### (Received, 24th March 1974; Com. 355.)

<sup>1</sup>S. Sano and S. Granick, J. Biol. Chem., 1961, 236, 1173; A. M. del C. Batlle, A. Benson, and C. Rimington, Biochem. J., 1965, 97, 731 and refs. therein.

- A. R. Battersby, J. Baldas, J. Collins, D. H. Grayson, K. J. James, and E. McDonald, J.C.S. Chem. Comm., 1972, 1265.
- <sup>1</sup> Z. Zaman, M. Abboud, and M. Akhtar, J.C.S. Chem. Comm., 1972, 1263.
  <sup>4</sup> B. Frydman, S. Reil, M. E. Despuy, and H. Rapoport, J. Amer. Chem. Soc., 1969, 91, 2338.
  <sup>5</sup> D. M. Besly and A. A. Goldberg, J. Chem. Soc., 1954, 2448.
  <sup>6</sup> Z. M. Guld G. M. Goldberg, J. Chem. Soc., 1954, 2448.
- <sup>6</sup>Z. Arnold, Coll. Czech. Chem. Comm., 1963, 28, 863; B. A. J. Clark, J. Parrick, P. J. West, and A. H. Kelly, J. Chem. Soc. (C), 1970, 498. <sup>7</sup> D. J. Bennett, G. W. Kirby, and V. A. Moss, J. Chem. Soc. (C), 1970, 2049.

  - <sup>8</sup> Cf. E. F. Carell and J. S. Kahn, Arch. Biochem. Biophys., 1964, 108, 1.